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This memo attempts to put into context, inherent limitations of a reference event 
set to validate (or demonstrate) relocation improvement/deterioration for a new set of 
travel times or calibrations.  A “relocation test data set” contains 1) a set of reference 
origins and 2) a set of associated arrivals.  Each reference epicenter has a finite 
uncertainty, X, that we characterize as GTX.  Each arrival has a “measurement error”.  
The travel-time tables for the new model we wish to test are supplied with “model error”.  
The location program combines the a-priori “model errors” and “measurement errors” to 
estimate a 90% confidence coverage ellipse (major axis, minor axis, and strike). 

Is it meaningful to improve/degrade the location of an individual GT5 event by 
6km?  Is it meaningful to improve/degrade any individual location by 6km when the 
confidence ellipse is 6000 km2?  Individual location improvements/degradations are 
rarely meaningful on their own.  Given that the error budgets are non-zero, we must 
evaluate calibrations based on sample statistics of a test data set.  How do we know if the 
test data set is large enough or of sufficient quality? 

 
Figure 1. The location confidence ellipse is increased by the uncertainty in the 

reference event location (GT).  The miss location vector normalized by the confidence 
ellipse in the direction of the reference event called “coverage”.  Coverage is >1 if GT 
lies outside the ellipse and < 1 if GT lies inside the ellipse. 

In a previous memo, Bóndár suggested that for the purposes of evaluation, we 
should combine the GTX error with the location confidence ellipse.  The resulting “test 
confidence ellipse” is used to normalize the length of the miss location vector to produce 
a statistic called “test coverage”.  In this memo we distinguish the new statistic from the 



usual “coverage” statistic which does not take into account the GTX uncertainty.  
Coverage statistics have following properties.  If the GT epicenter is within the coverage 
ellipse, then coverage is less than 1.  If the GT epicenter is outside the coverage ellipse, 
then coverage is greater than 1.  If the total error model is correct then we expect 
coverage should be distributed Chi-squared with 2 degrees of freedom, the median value 
(50th percentile) should be about 0.3 and the 90th percentile 1.0. 

In this memo, we carry these concepts a step further to ask the question, “Given a 
reference event test set, and finite errors, how many events should we expect to 
deteriorate?”  Alternatively we might ask, “What are the limitations of the test data set?”  
Since GTX errors, measurement errors, and model errors are not zero, we should expect 
some fraction of the events to deteriorate. 

If we center the “test confidence ellipse” on the reference event (GT) location, 
then we can measure the miss location of both the new location (calibrated) as well as the 
old location (uncalibrated IASEPEI) in the same coordinate system.  In this way, we 
define the normalized miss location of the old location as E1 and the normalized miss 
location of the new location as E2.  E2 is identical to the “test coverage statistic” for the 
new location.  We can interpret E1< 1 or > 1 as to whether the old location with the new 
error model would have “covered” GT location. 

Consider the following Monte Carlo experiment.  Begin with the GT location and 
for realization, generate synthetic arrivals with Gaussian errors consistent with the total 
error model (GTX + measurement + model) and locate the event using the synthetic 
arrivals.  Repeat the process for many realizations.  We expect 90% of the synthetic 
locations to lie within the test confidence ellipse.  Whether we used the old (uncalibrated) 
or new (calibrated) travel times is irrelevant to the Monte Carlo results so long as a 
consistent set is used for both the synthetic arrivals and location estimation. 

 

Figure 2.  We normalize the old, ∆1, and new, ∆2,  miss locations by the “test confidence 
ellipse” centered on the GT location. E1 = ∆1/σ1, E2 = ∆2/σ2. 

Coverage is usually analyzed at the 90th percentile where the expected value is 
unity. Table 1 shows the fractions of events for which E1 and E2 are > or < 1 for a test 
data set of 571 reference events (GT0-10).  We located all events using Pn and Sn 
arrivals (3 to 20 degrees) using the IDC IASPEI travel times (OLD - uncalibrated) and 
then we relocated the events using a set of SSSCs (NEW - calibrated).  We see that 91% 
of new locations cover the GT location.  Therefore, we can conclude the error model 
predicts “honest” 90% confidence ellipses; E2 < 1 for 90% of the calibrated locations.  
However, we also see that E1 < 1 for 90% of the uncalibrated locations; the old locations 
are already within the 90% tolerance of GT uncertainty and new error budget.  This is 



remarkable, given that the new calibrated model standard deviations are about 50% of the 
old uncalibrated model standard deviations and the overall miss location was reduced 
from the old model to the new model.  60% of the locations were improved, 47% were 
improved by more than 20%, and the 80th percentile miss location was reduced by 33%.  
However, the median miss location was reduced by only 14% and 31% were deteriorated 
by more than 20%.  Obviously, if the GT uncertainty, measurement error, and model 
error is not zero, then we should expect some events will get worse (deteriorate).  
However, in order to determine if this number is significant, we need to predict what the 
distribution should look like.  Only when we have answered this question, can we 
determine if a significant number of events got worse given the error models. 

Table 1.  E1 uncalibrated “test coverage” (without SSSCs), E2 calibrated “test 
coverage” (with SSSCs) based on the calibrated 90% test confidence ellipse (E*=1) 
centered on the GT location.  When E1 > 1 and E2 > 1 both locations lie outside the 90% 
test confidence ellipse.  When E1 < 1 and E2 > 1 the location moved from inside to 
outside (worse).  When E1 > 1 and E2 < 1 the location moved from outside the ellipse to 
inside (better).  When E1 < 1 and E2 < 1 then both the locations lie inside the ellipse. 

E* = 1.0 E1 > E* E1 < E* All 
E2 > E* 13 

(f1 = 0.02) 
40 
(f2 = 0.07) 

53 
(f1+f2 = 0.09) 

E2 < E* 44 
(f3 = 0.08) 

474 
(f4 = 0.83) 

518 
(f3+f4 = 0.91) 

All 57 
(f1+f3 = 0.10) 

514 
(f2+f4 = 0.90) 

571 Total 

 
Examination of Table 1 shows the number of locations that moved from inside to 

outside the test ellipsoid (E1 < 1, E2 > 1) is 7%.  These events got worse at the 90% 
confidence level.  This is just slightly less than what we would expect if we lost coverage 
on 9% of the 90% of events that already had coverage (9% of 90% is 8%).  Given the 
sample size of 571 events, we can expect to see ± 1.3 % fluctuations of the 10th and 90th 
percentiles.  Therefore, the number of events that got significantly worse is about what 
we would expect by random chance.  The important thing to take away from this part of 
the analysis is that at any test coverage level, we should expect to see a fraction of events 
get worse, we can define a significance test, and we can predict the fraction of events that 
could get worse simply by random chance.  If the new error model is honest and the old 
model performs even moderately well then we should expect to observe a level of 
degradation.  The power of the reference test set increases as f3+f4 becomes larger than 
f2+f4.  In the case of Table 1, we can see that f3+f4 = 0.91 is only marginally larger than 
f2+f4 = 0.9.  Therefore this data set has almost no power at a coverage level of 1. 

We repeat the analysis for the test confidence ellipse with E* = 0.3 and present 
the results in Table 2.  56% of the events are within the ellipse calibrated or uncalibrated.  
18% of the events are outside the ellipse calibrated or uncalibrated.  F2 (8%) is 
significantly smaller than f3 (17%);  99 events moved from outside to inside while only 
46 events moved from inside to outside.  Given that we expect f2 and f3 to fluctuate by 
~2% this is statistically significant.  For the E* = 0.3 test confidence ellipse, f3+f4 = 0.74 
is measurably larger than f2+f4 = 0.64 and we are able to detect the difference between 



the two models.  The percentage of events that degraded (8%) is actually only 50% of 
what we would have expected (26% of 64% = %16) by random chance. 

Table 2.  E1 uncalibrated “test coverage” (without SSSCs), E2 calibrated “test 
coverage” (with SSSCs) based on the calibrated 50% test confidence ellipse (E*=0.3) 
centered on the GT location.  When E1 > = 0.3 and E2 > 0.3 both locations lie outside 
the 50% test confidence ellipse.  When E1 < 0.3 and E2 > 0.3 the location moved from 
inside to outside (worse).  When E1 > 0.3 and E2 < 0.3 the location moved from outside 
the ellipse to inside (better).  When E1 < 0.3 and E2 < 0.3 then both the locations lie 
inside the ellipse. 

E* = 0.3 E1 > E* E1 < E* All 
E2 > E* 105 

(f1 = 0.18) 
46 
(f2 = 0.08) 

151 
(f1+f2 = 0.26) 

E2 < E* 99 
(f3 = 0.17) 

321 
(f4 = 0.56) 

518 
(f3+f4 = 0.74) 

All 204 
(f1+f3 = 0.36) 

367 
(f2+f4 = 0.64) 

571 Total 

 

 
Figure 3.  Plots of cumulative E1 (uncalibrated without SSSCs) and E2 (calibrated with 
SSSCs) test coverage for the GT0-10 reference event test data set.  The expected Chi-
squared distribution is shown for reference.  Both the calibrated and uncalibrated travel-
time tables perform better than expected for 90% of the events based on the theoretical 
Chi-squared distribution.  Both calibrated and uncalibrated travel-time tables perform 
poorer than expected for 10% of the events based on the theoretical Chi-squared 
distribution. For test values of E* between 0.01 and 0.6, between 50% and 100% more 

Chi-square 

Calibrated Uncalibrated 



events move from outside to inside as apposed to move from inside to outside the test 
ellipse with calibration. 
 

Figure 3 shows the cumulative distributions of E1 and E2 for the uncalibrated 
(without SSSCs) and calibrated (with SSSCs) test coverages.  We see that there is no 
measurable difference between the two models for E1 and E2 greater than 1.  However, 
at all values less than 1, the calibrated model performs measurably better.  The difference 
between the two cumulative plots is (f2+f4) – (f1+f2) as a function of the test coverage 
value, E*.  If we repeat the test for values of E* between 0.01 and 0.6 we find that 50 to 
100% more events move from outside to inside as move from inside to outside the test 
ellipse depending upon the chosen value of E*.  Just as important, for all values of E* < 
1, the number of events that degrade is never larger than what we would expect from 
random chance. 

We define δ = E1 – E2 as our “normalized improvement”.  Using normalized 
improvement, we can identify those events that are significantly improved versus those 
that are significantly degraded.  Table 3 shows some of the relevant statistics.  If we 
choose a test value E* = 0.3, then we observe 12% were Degraded, 20% were Improved, 
and 68% were neither.  The ratio of Improved/Degraded is a maximum near the test value 
E* = 0.5 where 1.85 times more events are Improved than Degraded. 

For E* = 0.5, 77% of the events are neither Improved nor Degraded.  For a test 
value of E* = 0.5 conditioned on the test data set we would expect 14% (19% of 76%) of 
the events would move from inside to outside the test ellipse with calibration (got worse) 
compared to 8% in Table 4.  Table 4 shows that for E* = 0.5, 15% of the events moved 
from outside to inside (got better) which is almost what we would expect (24% of 81%). 

Table 3.  Numbers and fractions of events with normalized improvement, δ = E1 – E2, > 
+E* or < -E* for test values of E*.  For a given test value, δ > +E* is “Improved” and δ 
< -E* is “Degraded”. 

E* δ < -E* 
(Degraded) 

δ > +E* 
(Improved) 

Improved/Degraded 

0.0 242 42% 329 58% 1.36 
0.1 114 20% 192 34% 1.68 
0.2 84 15% 138 24% 1.64 
0.3 70 12% 115 20% 1.64 
0.4 56 10% 96 17% 1.71 
0.5 46 8% 85 15% 1.85 
0.6 43 8% 70 12% 1.63 
0.7 42 7% 57 10% 1.36 
0.8 33 6% 39 7% 1.18 
0.9 29 5% 29 5% 1.00 
1.0 26 5% 26 5% 1.00 
2.0 9 2% 11 2% 1.22 

 



Table 4.  E1 uncalibrated “test coverage” (without SSSCs), E2 calibrated “test 
coverage” (with SSSCs) based on E*=0.5. 

E* = 0.5 E1 > E* E1 < E* All 
E2 > E* 53 

(f1 = 0.09) 
53 
(f2 = 0.09) 

106 
(f1+f2 = 0.19) 

E2 < E* 83 
(f3 = 0.15) 

382 
(f4 = 0.67) 

518 
(f3+f4 = 0.81) 

All 136 
(f1+f3 = 0.24) 

435 
(f2+f4 = 0.76) 

571 Total 

 
In conclusion, we propose new statistical tests for evaluating calibration 

performance in the presence of uncertainties in reference GT accuracy, measurement, and 
model errors.  Individual location improvements/degradations are rarely meaningful.  
Therefore, we must evaluate calibrations based on sample statistics of uncertain test data 
sets.  The new set of tests will help evaluate whether the test data sets and the results can 
be expected to make meaningful statistical statements about calibration performance.  
Using the test coverage tables defined above it is possible to distinguish between whether 
a set of calibrations does better or worse than would be expected by random chance.  
Using the normalized improvement statistic defined above it is possible to test if the 
relocation of an individual event is significant. 


